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significant and might imply that, although the zero field 
populations are the same at all times (exponential decay), they 
are not equal. Such a situation can arise when there is aniso­
tropic energy transfer occurring in the crystal.8 

Of the three spin components at zero field only the Tx sub-
state does not have the symmetry of a pure 7r-electron state of 
the molecule. The mr* state has strong (one-center) spin-orbit 
coupling only with ir states. Therefore, we have found evidence 
indicating in this instance that the chemistry of the triplet 
state7 is controlled by the singlet admixture in the various 
substates. A simple spin orbit coupling calculation yields ky 
« kz and our result can be used along with eq 2 to show that 
kx is M O - 3 of ky or kz. Thus the effect reported here is sub­
stantial. 

We are presently pursuing zero field approaches to mea­
suring the chemistry of different spin substates as well as a 
detailed structural analysis of dimethyl-s-tetrazine that will 
allow a more complete picture of the contributions from each 
spin substate to the relative reactivity of the triplet state. 
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Mechanism of Reductive Elimination. 3.1 

Methyl Radical Elimination from 
c/s-Dimethyltetracarbonylosmium 

Sir: 

Reported work on the decomposition of polymethyl transi­
tion-metal compounds, while extensive, has rarely offered 
definitive conclusions. For example, many workers have sug­
gested the involvement of methyl radicals26 on the basis of 
observed methane formation. However, the process of a 
elimination, which has been suggested by many workers23'0 and 
for which reasonable evidence has recently been published,7 

offers an alternative pathway for elimination of methane from 
two methyl ligands: it would leave a coordinated methylene 
carbene without a methyl radical intermediate. Such a 
mechanism has recently been proposed for the thermal de­
composition of (CH3)2Co[P(OCH3)3]4+.8 

We have therefore investigated in detail the formation of 
methane from Os(CO)4(CH3)2.

9'10 Despite the extraordinary 
thermal stability of this compound (considerable undecom-
posed material can be recovered after 1 week at 162.5 0C), 
methane elimination is irreversible once it occurs. The presence 
of 0.2 atm of CH4 has no significant effect on the rate of de­
composition (gas phase) of Os(CO)4(CH3)2, nor is any H 
found in Os(CO)4(CD3)2 recovered after partial decomposi-

Os(CO)4=CH2 «=£ CH4 + Os(CO)1=CH2 

CH3 H 

tion in the presence of 1 equiv of CH4. Thus neither a reversible 
a elimination nor any other reversible process is occurring. 

It is much harder to demonstrate that methane formation 
is not occurring irreversibly from an intermediate formed by 
a elimination. As such a process would give only CH4 and CD4 
from Os(CO)4(CH3)2 and Os(CO)4(CD3)2, respectively, a 
mixture of those two compounds was decomposed at 162.5 0C. 
All possible isotopically substituted methanes (CH4, CH3D, 
CH2D2, CHD3, CD4) were formed.11 These results offer no 
support for an irreversible process via a elimination, but they 
do not disprove it. The observation of CH2D2 suggests instead 
that methane is attacked during the decomposition process. 

Other observations confirm this inference. CD3H is ob­
served12 in the methane atmosphere resulting from both the 
partial decomposition of Os(CO)4(CD3)2 in the presence of 
1 equiv of CH4, described above, and the decomposition of 
Os(CO)4(CH3)2 in the presence of 1 equiv of CD4. 

These results require the irreversible formation of methane 
via a species capable of reacting with it and suggest the inter-
mediacy of a methyl radical.13,14 Solvent attack is thus pre­
dicted when the reaction is run in solution. Indeed, CD3H is 
formed upon thermolysis of Os(CO)4(CD3)2 in a wide variety 
of solvents at 162.5 0C:15 mesitylene, dodecane, di-n-pentyl 
ether, phenetole, rec-butylbenzene, 2-octanone, acetophenone, 
and 1,2,3,4-tetramethylbenzene. Some CD4 is also formed, 
e.g., CD4/CD3H = 0.18 in di-n-pentyl ether. 

The isotopic selectivity /CH/^D. required to demonstrate that 
the intermediate is in fact a methyl radical, thus cannot be 
determined from a single experiment in which solvent H and 
solvent D compete for the intermediate; some of the CD4 will 
be the result of attack by the intermediate on the starting 
material, not on the solvent. A solution to this problem is 
suggested by the following general rate equations 

d[CD4]/dr = kD[l] [R-D] + rate of formation 
of CD4 directly from Os(CO)4(CD3)2 (1) 

d[CD3H]/d? = *H[I] [R-H] (2) 

where R-D and R-H are deuterated and nondeuterated solvent 
and I is the reactive intermediate, presumably (but not nec­
essarily) arising from a process first order in Os(CO)4(CD3)2. 
If temperature (162.5 0C), initial concentration of Os-
(CO)4(CD3)2 (0.03 M), and reaction time (20% completion) 
are held constant, then [I] and the "rate of formation of CD4 
directly from Os(CO)4(CD3^" are constant, and for a series 
of reactions with different mole fractions of deuterated sol­
vent 

[CD4]/[CD3H] = *D/JfcH([R-D]/[R-H]) + a constant 
(3) 

Thus from the slope of a plot of [CD4]/[CD3H] against [R-
D]/[R-H], kH/kD can be obtained.16 

Results from the thermolysis of Os(CO)4(CD3)2 in mixtures 
of «-C12H26 and n-C]2D26 are shown in Figure 1. The value 
of ku/ko which results, 5.3 ± 0.9, provides quantitative ver­
ification of our hypothesis that methyl radicals are involved. 
Similar selectivities (the numbers quoted have been extrapo-
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Figure 1. Plot of the CD4/CD3H ratio from the thermolysis of 
Os(CO)4(CD3)2 in dodecane as a function of the rt-Ci2D26/"-Ci2H26 
ratio. 

lated to 162.5 0C when necessary) have been reported for 
known methyl radicals attacking C2H6/C2D6 (&H/&D = 5.6)17 

and for the attack of deuteriomethyl radicals on secondary H 
and D in propane (&H/&D = 5.2).18 Such isotope effects are 
known to be almost identical whether the reaction is conducted 
in solution or in the gas phase;19 they are also virtually inde­
pendent of the isotopic labeling of the methyl radical (-CD3 
Or-CH3).

17 

Although methane, via methyl radicals, is clearly the prin­
cipal product (from 0.8 to 1.2 equiv, depending upon condi­
tions) of the thermolysis of Os(CO)4(CH3)2, small amounts 
of other products are formed. Acetone (0.2 equiv) can be de­
tected from thermolysis in a sealed tube; the addition of 5.5 
equiv of triphenylphosphine increases this yield (to 0.7 equiv) 
and acetone becomes the principal product. It is possible that 
this acetone results from simple intramolecular reductive 
elimination, and that the increase represents the accelerating 
effect of an external nucleophile,20 but the dominance of the 
methyl radical path prevents investigation of this possibility: 
the acetone recovered from thermolysis of mixtures of 
Os(CO)4(CH3)2 and Os(CO)4(CDa)2 contains all possible 
combinations of hydrogen and deuterium. 

In the presence of Ph3P, as above, the principal inorganic 
product is Os(CO)3L2. Otherwise a number of clusters, un­
stable under the reaction conditions and therefore present in 
small steady-state concentrations, can be isolated in low yield,21 

along with some Os3(CO) j 2 . 
The fact that the primary process in the thermal decompo­

sition22 of Os(CO)4(CH3);) is Os-C bond cleavage contrasts 
with the smooth dinuclear elimination that we have observed 
in Os(CO)4H2

23 and Os(CO)4(H)CH3.1 Together these re­
sults prompt the hypothesis that dinuclear elimination can only 
occur when hydride ligands are present or available. The fact 
that dinuclear elimination does not occur with the dimethyl 
compound Os(CO)4(CH3)2 probably results from the inac­
cessibility of a methyl-bridged transition state—an inac­
cessibility also mirrored by the fact that methyl bridges be­
tween transition metals are extremely rare in stable com­
pounds.24 Os(CO)4(CH3)2, in short, represents a case where 
both simple intramolecular reductive elimination and dinuclear 
elimination are so energetically unfavorable that the only de­
composition pathway available under forcing conditions is 
metal-carbon bond homolysis. 
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Synthesis of a-Peroxylactones 
by Direct Oxygenation of Ketenes. 
Evidence for an Intermediate 

Sir: 

a-Peroxylactones possess inherent interest as high energy 
content molecules and importance as intermediates in chem-
iluminescent systems;1 yet useful synthetic methods for pre-
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